最小二乘支持向量机分类器的高稀疏化及应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1001-506x.2007.08.034

最小二乘支持向量机分类器的高稀疏化及应用

引用
为减少训练完毕之后的最小二乘支持向量机的分类计算量,借鉴神经网络的快速剪枝策略,提出了一种新的稀疏化算法:HS-LSSVM.它在主成分分析基础上,筛选出样本子集作为支持向量,它们既包含较多核函数矩阵信息,又相互独立性强,具有较好的代表性.算法将其余个体的信息转移至支持向量上,在实现高度稀疏化的同时,良好地保持了LSSVM的分类性能,并能适用于多类问题.对多个分类问题的测试表明,HS-LSSVM具有稀疏率高,分类性能强,且稀疏化速度较快等优点.

模式分类、最小二乘支持向量机、稀疏化、主成分分析、信息转移

29

TP18(自动化基础理论)

国家自然科学基金20276063;国家重点实验室基金

2007-10-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

1353-1357

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程与电子技术

1001-506X

11-2422/TN

29

2007,29(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn