基于RBFLN网络的改进RBF神经网络学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于RBFLN网络的改进RBF神经网络学习算法

引用
提出了一种基于径向基链网络(RBFLN)的改进径向基函数(RBF)网络学习算法.网络结构采用RB-FLN模型,添加输入层对输出层的线性映射,在训练过程中基于最大误差学习样本对资源分配网络(RAN)新性条件进行改动,在不满足新性条件时,采用相似度参数对隐层中心和宽度进行调整;而满足新性条件时,对新增隐层节点也通过类均值的方法做出相应的改进.最后通过对无机建筑材料成分分析的仿真表明该算法可有效地简化网络结构,实现样本正确分类,并获得较好的校验能力.

径向基链网络、资源分配网络、最大误差样本、相似度、材料成分

23

TP183(自动化基础理论)

国家自然科学基金资助项目60674073;国家科技支撑计划资助项目2006BAB14805;国家重点基础研究发展计划973资助项目2006CIM03405

2009-03-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

764-768

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程学报

1000-5781

12-1141/O1

23

2008,23(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn