用于离散变量因果分析的贝叶斯网络学习
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

用于离散变量因果分析的贝叶斯网络学习

引用
针对现有基于贝叶斯网络离散变量因果分析方法具有低效率和局限性等问题.使用依赖分析方法建立贝叶斯网络骨架,结合碰撞识别方法、变量之间的预测能力和描述长度极小准则确定边的因果方向,进行具有多项式复杂度的离散变量因果贝叶斯网络学习来避免这些问题,并给出了因果贝叶斯网络中定量因果信息传递计算方法.同时,针对小样本情况建立了因果最大似然树学习方法.

因果分析、贝叶斯网络、离散变量、预测能力

23

TP181(自动化基础理论)

国家自然科学基金资助项目60675036;上海市重点学科资助项目P1601;上海市教委重点资助项目05zz66

2008-12-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

596-602

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程学报

1000-5781

12-1141/O1

23

2008,23(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn