求解大规模优化问题的改进狼群算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12011/SETP2020-0630

求解大规模优化问题的改进狼群算法

引用
针对狼群算法(wolf pack algorithm,WPA)求解大规模问题时存在解精度低、收敛速度慢和易陷入局部最优的缺点,提出了 一种改进的狼群算法(improved wolf pack algorithm,IWPA).采用深度神经网络进行初始化狼群个体提高种群多样性;借助遗传算法挑选首狼提高算法寻优能力;设计距离优化因子以协同狼群算法个体的探索和开发能力;构建尺度系数改进围捕行为避免算法陷入局部最优,减少运行时间.选取18个大规模(100维,200维,500维和1000维)标准测试函数进行性能对比,结果表明,IWPA算法在求解精度和收敛速度上优于其他对比算法.

狼群算法、深度神经网络、距离优化因子、尺度系数

41

TP18(自动化基础理论)

国家自然科学基金61402144

2021-04-21(万方平台首次上网日期,不代表论文的发表时间)

共19页

790-808

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程理论与实践

1000-6788

11-2267/N

41

2021,41(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn