基于关联规则赋权特征选择集成的信用分类研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12011/1000-6788-2018-0621-07

基于关联规则赋权特征选择集成的信用分类研究

引用
针对信用分类数据集中常见的高维性特征,本文基于特征袋装法和关联规则挖掘算法,构建了新的赋权特征选择集成模型AR-WSAB.该模型能根据频繁项集的支持度和置信度,对各特征的重要度进行测度,进而选择出各特征子集,训练子分类器,再通过集成得到最终结果.通过在贷款违约预测数据集上进行实证分析,结果表明该模型分类正确率相对于Bagging集成模型和PCA算法都有显著优势,所提方法能够有效处理高维性特征,并且在各分类算法上都具有普适性.

高维性、信用风险分类、关联规则挖掘、特征选择、赋权特征袋装法

40

TP18(自动化基础理论)

国家自然科学基金重点项目71433001

2020-05-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

366-372

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程理论与实践

1000-6788

11-2267/N

40

2020,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn