基于自由搜索的LS-SVM在墒情预测中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于自由搜索的LS-SVM在墒情预测中的应用

引用
为有效地利用墒情监测资料预测未来墒情,考虑支持向量机的结构风险最小化准则和自由搜索算法良好的全局优化特点,应用最小二乘支持向量机方法,构造了优化目标函数,引入自由搜索算法对该目标函数寻优从而辨识模型参数,建立了预测墒情的最小二乘支持向量机(LS-SVM)模型.实例分析表明,支持向量机方法对墒情序列的平稳性要求不高,且模型易于实现,与传统的时间序列模型以及基于粒子群算法和鱼群算法的LS-SVM模型相比,基于自由搜索算法的LS-SVM模型具有较好的模拟及预测精度,相对误差小于15%的模拟值及预测值分别达到了100%和94.4%.

时间序列分析、支持向量机、自由搜索、粒子群算法、鱼群算法

30

S274.3(农田水利)

国家自然科学基金50839002

2010-04-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

201-206

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程理论与实践

1000-6788

11-2267/N

30

2010,30(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn