量子连续粒子群优化算法及其应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1000-6788.2008.05.016

量子连续粒子群优化算法及其应用

引用
提出了基于量子理论的连续粒子群优化(Continuous Particle Swarm Optimization based on Quantum Methodology, CPSO-QM)算法,主要是采用了量子理论中的叠加态特性和概率表达特性.其中,叠加态特性可以使单个粒子表达更多的状态,潜在地增加了种群的多样性;概率表达特性是将粒子的状态以一定的概率表达出来.在基准函数的实验测试中,对比其它常用算法,结果显示本文提出的算法性能较好.在实际应用中,以丙烯腈反应器作为建模研究对象,提出了三种进化策略,实验结果显示,这三种策略训练的神经网络软测量模型都可以较好地预测丙烯腈的收率.

进化算法、粒子群、量子计算、软测量模型

28

TP274(自动化技术及设备)

2008-07-22(万方平台首次上网日期,不代表论文的发表时间)

共9页

122-130

相关文献
评论
暂无封面信息
查看本期封面目录

系统工程理论与实践

1000-6788

11-2267/N

28

2008,28(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn