基于改进鸽群层级的无人机集群视觉巡检模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16182/j.issn1004731x.joss.21-1121

基于改进鸽群层级的无人机集群视觉巡检模型

引用
为解决无人机在执行输电线路巡检工作过程中易受环境干扰,以及传统单人单机工作模式巡检效率低下等问题,提出基于改进鸽群层级算法的无人机集群视觉巡检模型.根据载机车辆与待检塔位的GPS坐标计算出启航无人机的初始地标点,并规划运动轨迹;根据当前在巡无人机结束巡检点的位置更新待起飞无人机初始地标,实现启航与在巡无人机巡检地标的动态衔接,完成对地图指南针算子的改进;利用改进的自适应模板匹配算法优化在巡无人机的Adaboost视觉识别系统,通过自适应比对线路间距实现无人机与输电线路间相对位置的自主调整,在动态调节姿态的基础上提高检测质量.实验结果表明:相比于传统鸽群方法,该模型在巡检效率方面的在空巡检时间提高了 12%、巡检距离提高了 27.5%,风吹、地形变化的情况下巡线质量相比于常规识别模型分别提高了 21%和15%.

无人机输电线路巡检、改进鸽群层级算法、改进Adaboost、视觉识别

34

TP391.9(计算技术、计算机技术)

上海市地方院校能力建设15110500900

2022-07-04(万方平台首次上网日期,不代表论文的发表时间)

共11页

1275-1285

相关文献
评论
暂无封面信息
查看本期封面目录

系统仿真学报

1004-731X

11-3092/V

34

2022,34(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn