基于连续时间系统仿真的神经网络学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于连续时间系统仿真的神经网络学习算法

引用
从连续时间动力学的角度,研究了多层前馈神经网络的学习问题.基于李雅普诺夫稳定性分析方法,建立了一种神经网络权重参数连续调整的学习算法,并基于连续时间系统仿真的思想,给出了一种算法实现的自适应策略.算法实现中,通过估计截断误差估计自动调整步长,几乎不需要人工确定任何参数,而且可以保证算法的稳定性及计算精度.最后,给出了两个典型的应用算例.

连续时间系统、前馈神经网络、自适应学习算法、误差动力学、数字仿真

21

TP183(自动化基础理论)

国家自然科学基金60602025

2010-07-12(万方平台首次上网日期,不代表论文的发表时间)

共4页

6387-6390

相关文献
评论
暂无封面信息
查看本期封面目录

系统仿真学报

1004-731X

11-3092/V

21

2009,21(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn