基于支持向量回归神经网络的时间序列预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于支持向量回归神经网络的时间序列预测

引用
为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR-NN).SVR-NN用支持向量回归(SVR)方法获得网络的初始结构和权值,自适应地生成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点参数和权值. SVR-NN有很好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的"过拟合"现象.将SVR-NN应用到时间序列预测上.结果表明,SVR-NN预测模型能精确地预测混沌时间序列,具有很好的理论和应用价值.

支持向量回归、神经网络、鲁棒学习算法、时间序列、预测

20

TP183(自动化基础理论)

甘肃省自然科学基金;兰州交通大学青蓝人才工程基金资助计划

2008-10-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

4025-4030

相关文献
评论
暂无封面信息
查看本期封面目录

系统仿真学报

1004-731X

11-3092/V

20

2008,20(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn