基于时序偏移双残差网络的窃电行为检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13718/j.cnki.xsxb.2022.08.008

基于时序偏移双残差网络的窃电行为检测

引用
针对窃电量小、窃电发生时间随机的窃电行为,提出一种基于时序偏移双残差网络(TS-Bi-ResNet)的窃电行为检测模型.将基础残差网络模型改进为双残差网络(bi-residual network,Bi-ResNet)模型,考虑到窃电行为发生时间的随机性,利用时序偏移(timing shift,TS)算法对用电数据预处理,使模型能够学习用电数据的时间因素特征,构成TS-Bi-ResNet模型.根据真实用电数据和窃电特征生成含有伪窃电数据的混合用电数据集,利用TS-Bi-Res-Net模型学习其浅层特征和深层特征,进而执行窃电行为检测.仿真和实际运行结果表明,TS-Bi-ResNet模型可以有效检测窃电量小且窃电发生时间随机的窃电行为,其检测精度优于LSTM模型与残差网络(ResNet)模型.

窃电行为检测、双残差网络、时序偏移算法、机器学习

47

TN929.53

国网重庆市电力公司科技项目;重庆市教委科学技术研究计划资助项目

2022-08-11(万方平台首次上网日期,不代表论文的发表时间)

共10页

54-63

相关文献
评论
暂无封面信息
查看本期封面目录

西南师范大学学报(自然科学版)

1000-5471

50-1045/N

47

2022,47(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn