基于改进近邻传播算法的聚类质量评价模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13718/j.cnki.xsxb.2020.06.015

基于改进近邻传播算法的聚类质量评价模型

引用
针对近邻传播(Affinity Propagation,简称AP)算法在对非团状数据集聚类过程中出现的局部聚类较多、精准度不高等问题,提出了一种基于改进AP算法的聚类质量评价模型.首先,在AP算法初步聚类的基础上,通过合并相似度较大的簇,减小聚类上限值kmax,进一步压缩聚类区间范围;其次,给出一个新的内部评价指标,用分属不同簇的样本对的平均距离代表簇间距离,削弱噪声数据的影响,平衡簇间分离度与簇内紧致度的关系.在UCI和KDD CUP99数据集上的实验结果表明,新模型可以给出精准的最优聚类数(范围),能够在保持较低漏报率的同时,有效提高样本的检测率和分类正确率.

聚类评价指标、近邻传播、内部评价指标、最优聚类数

45

TP301.6(计算技术、计算机技术)

广东省教育科学规划课题2018GXJK339

2020-07-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

97-106

相关文献
评论
暂无封面信息
查看本期封面目录

西南师范大学学报(自然科学版)

1000-5471

50-1045/N

45

2020,45(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn