基于支持向量机方法的网络入侵检测实验研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13718/j.cnki.xsxb.2020.01.010

基于支持向量机方法的网络入侵检测实验研究

引用
网络信息不断增加和攻击手段日益复杂,给网络安全领域带来了日益严峻的挑战.为了改善网络入侵检测技术现状,提出了一种基于支持向量机和决策集合理论融合的网络入侵检测方法,通过对规则信息、攻击信息、边界信息的准确界定完成检测过程.选取了基于神经网络的入侵检测方法、基于遗传算法的入侵检测方法、基于传统支持向量机的入侵检测方法作为对比算法,在K-Cup测试数据集下展开实验研究.实验结果表明,该文提出的方法具有更高的召回率、精确率、查准率和更低的误检率,其性能明显优于其他3种方法,可应用于入侵检测领域.

网络入侵检测、支持向量机、攻击信息、召回率、精确率

45

TP393(计算技术、计算机技术)

2018年度河南省科技攻关重点研发与推广项目182102210139

2020-06-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

57-61

相关文献
评论
暂无封面信息
查看本期封面目录

西南师范大学学报(自然科学版)

1000-5471

50-1045/N

45

2020,45(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn