Capsule网络的心脏磁共振图像病患识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11920/xnmdzk.2020.04.010

Capsule网络的心脏磁共振图像病患识别

引用
深度学习中胶囊(Capsule)神经元结构旨在克服传统卷积神经网络难以挖掘同级特征之间关系的缺点.胶囊网络(Capsule Net,CapsNet)是以胶囊神经元作为网络单元的一种新型的分类网络结构.该网络使用了压缩(Squash)算法作为激活函数,使用动态路由算法(Dynamic Routing)作为网络优化方法,欲获得更好的分类性能.心脏磁共振图像识别算法面临的主要问题:患病图像与正常图像之间的差异不显著,因此使用多层CNN网络难以达到十分优秀的效果.而胶囊网络CapsNet可以在较浅层网络的情况下,可以容纳更多的特征信息,有利于识别心脏磁共振图像.设计使用浅层胶囊网络对心脏磁共振图像进行二分类病患识别,并与VGG16、SVM(Support Vector Machine,支持向量机)等方法进行比较,实验结果表明CapsNet在应用上优于CNN网络其正确率、敏感度、特异性、AUC指标分别为91.04%、97.60%、87.04%、96.43%.实验结果表明胶囊网络相比较传统方法和浅层网络,在心脏磁共振图像识别方面表现了优异的性能.

Capsule Net、动态路由、卷积神经网络、心脏磁共振图像

46

TP391.41(计算技术、计算机技术)

国家自然科学基金项目;四川省科技厅杰出青年科技人才;四川省科技厅重点研发项目

2020-08-19(万方平台首次上网日期,不代表论文的发表时间)

共10页

400-409

相关文献
评论
暂无封面信息
查看本期封面目录

西南民族大学学报(自然科学版)

2095-4271

51-1672/N

46

2020,46(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn