基于可见/近红外光谱技术的新鲜茶叶叶片含水率快速测定
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11920/xnmdzk.2018.04.004

基于可见/近红外光谱技术的新鲜茶叶叶片含水率快速测定

引用
提出了利用可见/近红外光谱技术检测新鲜茶叶叶片中含水量的方法.首先采集350~2500nm波段范围内177个新鲜茶叶叶片的光谱反射率信息,作为X变量.将不同预处理后的光谱数据建立偏最小二乘(partial least squares,PLS)模型,再利用回归系数法(regression coefficients,RC)提取全波段光谱中的特征波长并建立基于特征波长的预测模型.结果显示,利用全谱段光谱信息建立的模型中,未经预处理建立的模型最优,建模集和预测集中决定系数(coefficient of determination,R2)分别是0.9039和0.8856,均方根误差(root mean square error,RMSE)分别是0.0092和0.0120,剩余预测偏差(residual predictive deviation,RPD)是2.9659;基于特征波长的模型中,也是未经预处理建立的模型最优,建模集和预测集中R2分别是0.9070和0.8199,RMSE分别是0.0107和0.0151,RPD是2.3701.结果表明,可见-近红外光谱技术结合特征波长提取进行新鲜茶叶叶片中含水率检测是可行的.

茶叶、光谱、含水率、偏最小二乘、特征波长

44

TS20;TS272(食品工业)

中央高校基本科研业务费专项基金项目2014NZYQN43;四川省教育厅项目15ZB0486

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

352-357

相关文献
评论
暂无封面信息
查看本期封面目录

西南民族大学学报(自然科学版)

2095-4271

51-1672/N

44

2018,44(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn