基于可见/近红外光谱技术的新鲜茶叶叶片含水率快速测定
提出了利用可见/近红外光谱技术检测新鲜茶叶叶片中含水量的方法.首先采集350~2500nm波段范围内177个新鲜茶叶叶片的光谱反射率信息,作为X变量.将不同预处理后的光谱数据建立偏最小二乘(partial least squares,PLS)模型,再利用回归系数法(regression coefficients,RC)提取全波段光谱中的特征波长并建立基于特征波长的预测模型.结果显示,利用全谱段光谱信息建立的模型中,未经预处理建立的模型最优,建模集和预测集中决定系数(coefficient of determination,R2)分别是0.9039和0.8856,均方根误差(root mean square error,RMSE)分别是0.0092和0.0120,剩余预测偏差(residual predictive deviation,RPD)是2.9659;基于特征波长的模型中,也是未经预处理建立的模型最优,建模集和预测集中R2分别是0.9070和0.8199,RMSE分别是0.0107和0.0151,RPD是2.3701.结果表明,可见-近红外光谱技术结合特征波长提取进行新鲜茶叶叶片中含水率检测是可行的.
茶叶、光谱、含水率、偏最小二乘、特征波长
44
TS20;TS272(食品工业)
中央高校基本科研业务费专项基金项目2014NZYQN43;四川省教育厅项目15ZB0486
2018-08-29(万方平台首次上网日期,不代表论文的发表时间)
共6页
352-357