基于深度主动学习的MVB网络故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-2724.20210195

基于深度主动学习的MVB网络故障诊断方法

引用
多功能车辆总线MVB(multiple vehicle bus)用于传输重要的列车运行控制指令和监视信息,准确地诊断MVB网络故障是列车智能运维的基础,为此,提出一种将主动学习和深度神经网络相结合的MVB网络故障诊断方法.该方法采用堆叠去噪自编码器自动提取MVB信号物理波形特征,并将该特征用于训练深度神经网络来实现MVB网络故障模式分类;基于不确定性和可信度的高效主动学习方法,可解决实际应用中标记样本不足和人工标记成本高昂的问题,使用少量标记训练样本就能得到高性能的深度神经网络模型.实验结果表明:为达到90%以上分类准确率,所提方法只需要600个标记训练样本,小于随机采样方法所需标记训练样本数的2800个;在相同标记训练样本数下,所提方法在3种性能指标下均优于传统方法.

多功能车辆总线、故障诊断、主动学习、深度神经网络、堆叠去噪自编码器

57

U285.5(铁路通信、信号)

中国国家铁路集团有限公司科技研究开发计划N2020J007

2022-12-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

1342-1348,1385

相关文献
评论
暂无封面信息
查看本期封面目录

西南交通大学学报

0258-2724

51-1277/U

57

2022,57(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn