半监督卷积神经网络的词义消歧
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-2724.20200105

半监督卷积神经网络的词义消歧

引用
为了解决有标签语料获取困难的问题,提出了一种半监督学习的卷积神经网络(convolutional?neural networks,?CNN)汉语词义消歧方法.?首先,提取歧义词左右各2个词汇单元的词形、词性和语义类作为消歧特征,利用词向量工具将消歧特征向量化;然后,对有标签语料进行预处理,获取初始化聚类中心和阈值,同时,使用有标签语料对卷积神经网络消歧模型进行训练,利用优化后的卷积神经网络对无标签语料进行语义分类,选取满足阈值条件的高置信度语料添加到训练语料之中,不断重复上述过程,直到训练语料不再扩大为止;最后,使用SemEval-2007:Task#5作为有标签语料,使用哈尔滨工业大学无标注语料作为无标签语料进行实验.?实验结果表明:所提出方法使CNN的消歧准确率提高了3.1%.

半监督学习;卷积神经网络;词义消歧;消歧特征;词向量工具

57

TP391.2(计算技术、计算机技术)

国家自然科学基金;中国博士后科学基金;黑龙江省自然科学基金;黑龙江省普通高校基本科研业务费专项

2022-02-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

11-17,27

相关文献
评论
暂无封面信息
查看本期封面目录

西南交通大学学报

0258-2724

51-1277/U

57

2022,57(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn