一种半监督的汉语词义消歧方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-2724.20170178

一种半监督的汉语词义消歧方法

引用
为了解决自然语言处理领域中的一词多义问题,本文提出了一种利用多种语言学知识和词义消歧模型的半监督消歧方法.首先,以歧义词汇左、右邻接词单元的词形、词性和译文作为消歧特征,来构建贝叶斯(Bayes)词义分类器,并以歧义词汇左、右邻接词单元的词形和词性作为消歧特征,来构建最大熵(maximum entropy,ME)词义分类器;其次,采用Co-Training算法并结合大量无标注语料来优化词义消歧模型;再次,进行了优化实验,在实验中,使用SemEval-2007:Task#5的训练语料和哈尔滨工业大学的无标注语料来优化贝叶斯分类器和最大熵分类器;最后,对优化后的词义消歧模型进行测试.测试结果表明:与基于支持向量机(support vector machine,SVM)的词义消歧方法相比,本文所提出方法的消歧准确率提高了0.9%.词义消歧的性能有所提高.

自然语言处理、词义消歧、最大熵、贝叶斯分类器

54

TP391.2(计算技术、计算机技术)

国家自然科学基金资助项目61502124,60903082;中国博士后科学基金资助项目2014M560249;黑龙江省自然科学基金资助项目F201420,F2015041

2019-05-24(万方平台首次上网日期,不代表论文的发表时间)

共7页

408-414

相关文献
评论
暂无封面信息
查看本期封面目录

西南交通大学学报

0258-2724

51-1277/U

54

2019,54(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn