基于SA-RBF神经网络的冲压成形拉延筋优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-2724.2017.05.018

基于SA-RBF神经网络的冲压成形拉延筋优化

引用
为提高神经网络预测精度,利用模拟退火算法对基于k-均值聚类的RBF(radical basis function)神经网络进行了结构优化.首先,以NUMISHEET 02翼子板冲压成形为研究对象,以6条等效拉延筋力作为输队变量,基于Spearman相关分析和拉丁超立方抽样抽取相关性系数较小的数据作为SA-RBF(simulated annealing-RBF)神经网络的训练样本;其次,将训练样本进行Dynaform数值仿真,以起皱缺陷和拉裂缺陷建立的成形质量评价函数为目标函数,通过SA-RBF神经网络建立等效拉延筋力与目标函数间的非线性映射关系;再次,利用NSGA-Ⅱ 算法对其进行求解得到Pareto最前沿,通过灰色关联分析理论确定最佳拉延筋力;第三,利用优化的拉延筋力对翼子板成形进行数值仿真分析,成形极限图结果表明,优化后的成形件起皱显著减少,而巨塑性变形更加均匀,提高了成形质量.

拉延筋、模拟退火算法、RBF神经网络、NSGA-Ⅱ算法

52

TG386(金属压力加工)

国家色然科学基金资助项目51005193;国家大学生创新创业训练计划项目201710613033

2017-10-31(万方平台首次上网日期,不代表论文的发表时间)

共8页

970-976,993

相关文献
评论
暂无封面信息
查看本期封面目录

西南交通大学学报

0258-2724

51-1277/U

52

2017,52(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn