10.3969/j.issn.0258-2724.2017.05.003
基于非平衡数据的车辆轮对状态集成分类方法
针对地铁车辆轮轨振动信号信噪比低、非线性、非平稳等特点,为实现平轮故障的不解体检测诊断,提出了一种基于非平衡数据的集成分类器模型.以踏面正常、踏面擦伤、踏面剥离和圆周磨耗四种典型的平轮故障为研究对象,对采集的轮轨振动信号进行变分模态分解与模糊嫡特征提取,构造故障特征数据集;通过偏置支持向量机筛选训练集中的支持向量样本并进行SMOTE(synthetic minority oversampling technique)过采样,对非支持向量进行分层组合并构造集成分类器,采用有向无环图的方式对测试集进行平轮故障识别;最后,通过查全率和查准率对比分析,给出多类非平衡数据集的分类性能评价.论文在车辆段轨旁进行了空载分类试验,实验结果表明,所提出的方法对4种定性模式障的识别准确率超过96%,可被有效应用于地铁车辆的平轮故障诊断.
平轮故障、变分模态分解、特征提取、支持向量机、故障诊断
52
TH17
广东省科技厅科技项目2013498A
2017-10-31(万方平台首次上网日期,不代表论文的发表时间)
共7页
852-858