基于神经网络的车辅系统障碍物识别技术研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于神经网络的车辅系统障碍物识别技术研究

引用
针对因雾霾、夜间等视线不佳环境下难以识别行人、车辆、涵洞和隧道等各类障碍物的难题,提出了一种基于神经网络的车辅系统障碍物识别技术.第1步进行深度神经网络设计,首先应用了单步目标检测算法框架进行算法设计,然后通过多尺度预测解决热源体目标尺寸差异问题,最后进行目标位置回归估计.第2步进行覆盖目标的全部特征训练数据集制备.第3步进行网络训练和推理、模型迁移.第4步针对嵌入式的平台进行神经网络模型轻量化设计,解决量化误差并实现计算精度,实现驾驶人员在雾霾、夜间等环境下对路况障碍物准确识别并清晰显示告警.通过实际测试,该方法提升了在雾霾、夜间等环境下路况障碍物识别的准确性和实时性,保障了驾驶安全.

深度神经网络、数据集、网络训练、模型迁移、轻量化、推理

TP391.4(计算技术、计算机技术)

2022-10-11(万方平台首次上网日期,不代表论文的发表时间)

共5页

40-44

相关文献
评论
暂无封面信息
查看本期封面目录

新技术新工艺

1003-5311

11-1765/T

2022,(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn