生成对抗网络的发展与挑战
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2023.01.015

生成对抗网络的发展与挑战

引用
生成对抗网络(Generative adversarial network,GAN)由生成模型和判别模型构成,生成模型获取真实数据的概率分布,判别模型判断输入是真实数据还是生成器生成的数据,二者通过相互对抗训练,最终使生成模型学习到真实数据的分布,使判别模型无法准确判断输入数据的来源.生成对抗网络为视觉分类任务的算法性能的提升开辟了新的思路,自诞生之日起至今已经在各个领域产生了大量变体.本文的主要内容包括:生成对抗网络的研究现状、应用场景和基本模型架构,并列举了生成对抗网络本身所存在的弊端;从网络架构、损失函数和训练方式这三方面对生成对抗网络的各种主要典型发展进行归纳;详细总结和分析了生成对抗网络在人脸图像生成和编辑、风格迁移、图像超分辨率、图像修复,序列数据生成、视频生成等各个应用领域的算法以及对应算法的优缺点;介绍了生成对抗网络的常用评价指标并且分析了这些指标的适用场景和不足之处;最后从多个方面对生成对抗网络所面临的挑战进行了讨论,并指出了对其可能的改进方向.

生成对抗网络、生成模型、概率分布估计、应用场景、模型评价

39

TP183(自动化基础理论)

河南省重点研发与推广专项192102210121

2023-03-08(万方平台首次上网日期,不代表论文的发表时间)

共22页

154-175

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

39

2023,39(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn