一种基于修正激活函数的CNN车载毫米波雷达目标检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2023.01.012

一种基于修正激活函数的CNN车载毫米波雷达目标检测方法

引用
为了提高车载毫米波雷达在复杂城市道路环境中目标检测的抗杂波与干扰能力,本文利用卷积神经网络(CNN)特征参数提取和目标分类特性,提出了一种改进的基于CNN的车载毫米波雷达目标检测方法.该方法首先将毫米波雷达回波信号距离-多普勒二维数据运用滑窗进行分割,并采用CNN网络模型处理分割后的二维矩阵,训练二维CNN网络模型及其参数,使其具有提取回波特征并基于特征参数模型进行目标分类的能力,从而实现目标检测功能.通过对卷积神经网络模型结构进行优化,增加批量归一化层,优化Dropout层使得低权重特征失活,自适应地删减部分神经元节点修正该层非线性激活函数,进一步降低了CNN模型目标检测的虚警概率.实验结果表明,在相同虚警概率条件下,CNN网络检测方法目标发现概率优于传统的单元平均恒虚警检测方法,并且在低信噪比的条件下仍然能够保持较高的发现概率;在同等发现概率水平下,修正后CNN网络检测方法的虚警概率较修正前可提高约1个数量级.

雷达目标检测、深度学习、卷积神经网络(CNN)、低虚警率、优化Dropout层

39

TN957.51

北京交通大学人才基金项目2021RC263

2023-03-08(万方平台首次上网日期,不代表论文的发表时间)

共12页

116-127

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

39

2023,39(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn