YOLOv5与Deep-SORT联合优化的无人机多目标跟踪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2022.12.017

YOLOv5与Deep-SORT联合优化的无人机多目标跟踪算法

引用
针对无人机平台下小目标检测性能差、目标尺度变化较大、复杂背景干扰等导致跟踪失败的问题,该文提出一种联合优化检测器YOLOv5(You Only Look Once)和Deep-SORT(Simple Online and Realtime Tracking with a Deep Association Metric)的无人机多目标跟踪算法.该算法使用改进的CSPDarknet53(Cross Stage Paritial Darknet53)骨干网络重新构建检测器中的特征提取模块,同时通过自顶向下和自底向上的双向融合网络设计小目标检测层,采用无人机航拍数据集训练更新优化后的目标检测网络模型,解决小目标检测性能差问题;在跟踪模块中,提出结合时空注意力模块的残差网络作为特征提取网络,加强网络感知微小外观特征及抗干扰的能力,最后采用三元组损失函数加强神经网络区分类内差异的能力.实验结果表明,优化后的目标检测的平均检测精度相比于原始YOLOv5提升了11%,在UAVDT数据集上相较于原始跟踪算法准确率与精度分别提高了13.288%、3.968%,有效减少目标身份切换频次.

深度学习、目标跟踪、目标检测、无人机

38

TP391(计算技术、计算机技术)

福建省自然科学基金项目2019J01055

2023-03-08(万方平台首次上网日期,不代表论文的发表时间)

共11页

2628-2638

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

38

2022,38(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn