基于时域Gammatone滤波特征的广播语种识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2022.03.018

基于时域Gammatone滤波特征的广播语种识别

引用
针对广播语种识别问题,提出一种语音时域滤波方法,用gammatone时域函数与预处理后的语音信号进行卷积滤波,再分帧加窗并求对数化能量得到时域GF(gammatone filterbank)特征.将特征参数图像化表示,然后通过VGG19和Resnet34分类网络进行语种识别实验.同时,也使用自动色阶算法对加噪语音的图像化特征参数进行去噪,并对比不同维数的特征参数以及不同噪声类型和信噪比对语种识别率的影响.结果表明,采用该特征参数的广播语种识别准确率高于使用传统的GFCC特征、GFCC-D-A特征、GFCC-SDC特征及Fbank特征,且在不同噪声类型和不同信噪比的广播语音识别场景下,语种识别准确率均有一定提升.

广播语种识别、gammatone时域滤波、时域gammatone filterbank、自动色阶算法

38

TN912.3

国家自然科学基金61761025

2022-05-09(万方平台首次上网日期,不代表论文的发表时间)

共10页

599-608

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

38

2022,38(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn