上行免调度NOMA系统中基于遗传算法的扩频矩阵优化方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2022.03.013

上行免调度NOMA系统中基于遗传算法的扩频矩阵优化方法

引用
为了提升基于压缩感知(Compressive Sensing,CS)框架下的免调度非正交多址接入(Non-Orthogonal Multiple Access,NOMA)系统的信道估计和多用户检测性能,本文提出了一种基于遗传算法(Genetic Algorithm,GA)的扩频矩阵优化方法.该方法以最小化扩频矩阵的互相关值为目标,提出一种遗传算法来解决从傅里叶变换方阵中抽取若干行作为NOMA系统扩频矩阵的组合优化问题.与解决同类问题的现有遗传算法相比,本文提出的遗传算法在个体构造上更加新颖,并且能够收敛于更小的扩频矩阵互相关值.仿真结果表明,在基于多重测量矢量CS框架的免调度NOMA系统中,与使用高斯随机矩阵作为扩频矩阵相比,使用本文优化方法获得的扩频矩阵能够使系统的误符号率平均降低52.14%;成功活跃检测率平均增加12.14%;信道估计均方误差降低约10dB左右.

非正交多址接入、分布式压缩感知、扩频矩阵优化、遗传算法

38

TN929.5

国家自然科学基金;国家自然科学基金;江苏省高等学校自然科学研究项目

2022-05-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

554-561

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

38

2022,38(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn