10.16798/j.issn.1003-0530.2021.09.009
基于HOURGLASS网络语义关键点提取的光学图像空间目标姿态估计方法
空间目标姿态估计是有效实现各类航天任务的重要前提,基于空间光学观测图像的目标姿态估计关键一环在于快速准确地建立起观测图像与空间目标之间的"二维特征点-三维实体结构"映射关系.传统的方法往往将这一任务分解为特征提取和特征关联两个步骤序贯进行,然而在空间目标光学观测场景中,高动态的光照变化和目标的相对高速运动特点会显著降低图像特征提取的可靠性,影响后续特征关联匹配的正确率并最终降低对空间目标的姿态估计精度.针对这一问题,本文提出了一种基于语义关键点提取的光学图像空间目标姿态估计方法,利用Hourglass网络端到端地提取包含语义信息的关键点,直接实现了光学图像中二维特征点与目标三维实体结构的关联映射,并在此基础上利用EPnP算法求解待估计的目标姿态值.实验结果表明,本文所提的方法能较好地兼顾算法精度与效率,其在仿真数据集上的姿态估计最小误差为0.83°,且在数据降质的情况下平均误差依然优于传统方法.
光学图像;空间目标;姿态估计;深度学习;语义关键点
37
TP389.1(计算技术、计算机技术)
国防基础科研计划;装备预研基金
2021-11-08(万方平台首次上网日期,不代表论文的发表时间)
共10页
1653-1662