基于均值辅助的LSTM网络频谱感知算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2021.03.011

基于均值辅助的LSTM网络频谱感知算法

引用
针对传统感知算法在低信噪比时检测性能低和深度学习感知算法网络训练量大、复杂度高等问题,本文提出一种在均值辅助下的长短时记忆网络(Long Short-Term Memory,LSTM)频谱感知算法.具体来讲,首先对接收信号序列做多点均值计算,然后利用所得的均值构造特征向量并作为LSTM网络的输入来训练网络,最后利用训练好的网络对新的接收序列进行感知.仿真结果表明:相比于传统算法,所提算法在检测性能上有较大提升;相对于利用原始接收序列直接训练的深度学习算法,所提算法的复杂度大幅下降.

频谱感知、LSTM、神经网络、均值辅助

37

TP391(计算技术、计算机技术)

陕西省宽带无线技术应用创新团队;西安邮电大学创新基金

2021-04-21(万方平台首次上网日期,不代表论文的发表时间)

共8页

409-416

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

37

2021,37(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn