基于深度学习的海上目标一维序列信号目标检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2020.12.004

基于深度学习的海上目标一维序列信号目标检测方法

引用
当前海面目标检测方法多基于统计理论,检测性能受背景统计特性假设的影响,本文从信号预测和特征分类两个角度,分别采用长短时记忆网络(LSTM)和卷积神经网络(CNN)对信号时间序列幅度信息进行处理,用于海上目标一维序列雷达信号检测,该方法不需事先假设背景统计特性,泛化能力更强.基于LSTM序列预测的目标检测方法通过用海杂波信号幅度时间序列对网络进行训练,再用训练后的网络对后续序列进行预测,并与后续实测信号进行比较,实现目标检测.基于CNN序列分类的目标检测方法中采用截取的海杂波信号和目标信号幅度序列作为数据集样本,对一维卷积核CNN进行训练,使其具有识别目标杂波信号特征能力,从而实现目标检测.最后,采用IPIX和CSIR实测海杂波数据对两种方法进行验证,结果表明两种方法均可实现一维序列信号中海面目标的检测,但LSTM预测方法对于长序列检测的实时性有待于进一步提高;CNN分类方法可实现实时检测,但仅利用信号幅度信息,检测性能仍需进一步提升.

雷达目标检测、深度学习、卷积神经网络(CNN)、长短时记忆网络(LSTM)、海杂波

36

TN957.51

国家自然科学基金;国防科技基金;山东省重点研发计划

2021-01-25(万方平台首次上网日期,不代表论文的发表时间)

共11页

1987-1997

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

36

2020,36(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn