数据集类别不平衡性对迁移学习的影响分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2020.01.014

数据集类别不平衡性对迁移学习的影响分析

引用
数据集类别不平衡性是机器学习领域的常见问题,对迁移学习也不例外.本文针对迁移学习下数据集类别不平衡性的影响研究不足的问题,重点研究了以下几种不平衡性处理方法对迁移学习的影响效果分析:过采样、欠采样、加权随机采样、加权交叉熵损失函数、Focal Loss函数和基于元学习的L2RW(Learning to Reweight)算法.其中,前三种方法通过随机采样消除数据集的不平衡性,加权交叉熵损失函数和Focal Loss函数通过调整传统分类算法的损失函数以适应不平衡数据集的训练,L2RW算法则采用元学习机制动态调整样本权重以实现更好的泛化能力.大量实验结果表明,在上述各种不平衡性处理方法中,过采样处理和加权随机采样处理更适合迁移学习.

迁移学习、不平衡数据分类、深度神经网络、重采样

36

TP391(计算技术、计算机技术)

国家自然科学基金61372123,61701252

2020-06-04(万方平台首次上网日期,不代表论文的发表时间)

共8页

110-117

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

36

2020,36(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn