基于深度学习的酒标分割研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2019.04.013

基于深度学习的酒标分割研究

引用
红酒图像中的酒标区域含有重要的红酒品类信息,而对酒标区域的定位与分割可以有效去除背景区域对图像匹配算法的干扰.传统图像分割算法大多基于局部图像特征和人工设计规则,对噪声较为敏感,并且难以应对大规模数据的处理.针对传统算法的不足,本文首先构造了一个大规模酒标分割数据集,然后提出了一种基于深度学习的酒标分割方法.我们构造了一个基于残差网络的语义分割模型,并且在模型中加入跨层连接,实现低层特征和高层特征的有效融合,使得分割的边缘细节更加清晰和准确.另外,我们采用了带孔卷积金字塔池化结构整合多尺度信息,在增大模型感受野的同时使得模型适应不同尺度的酒标区域.在我们构造的酒标数据集上的实验结果表明,本文提出的酒标分割网络能够进行实时的酒标图像分割,并且达到了相当高的分割准确率.

酒标分割、深度学习、语义分割、特征融合、带孔卷积金字塔池化

35

TP183(自动化基础理论)

国家自然科学基金U1604153

2019-07-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

623-630

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

35

2019,35(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn