基于深度学习的通信辐射源指纹特征提取算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16798/j.issn.1003-0530.2018.01.004

基于深度学习的通信辐射源指纹特征提取算法

引用
针对在小样本条件下难以有效提取通信辐射源指纹特征的问题,设计了一种堆栈自编码网络的通信辐射源个体细微特征提取算法.首先通过预处理(高阶谱分析)将原始通信辐射源信号从时域转化到高维特征空间,然后利用大量无标签的通信辐射源高维样本训练堆栈自编码器网络,在此基础上,通过少量有标签的通信辐射源样本对softmax回归模型进行精校训练,从而获得面向通信辐射源指纹特征提取的深度学习网络.实际采集的通信电台数据集上的实验结果验证了该模型的可行性与有效性.

堆栈自编码器、通信辐射源指纹、特征提取

34

TN911.7

国家自然科学基金资助项目61272333;国防科技重点实验室基金9140C130502140C13068;总装预研项目基金9140A33030114JB39470

2018-04-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

31-38

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

34

2018,34(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn