引入负相似的高光谱图像半监督分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0530.2015.04.006

引入负相似的高光谱图像半监督分类

引用
高光谱图像数据体现为波段多、地物标签获取困难大、谱信息抗干扰能力弱等特征,容易引起维数灾难、光谱空间变异性等问题,从而影响分类器的分类精度。针对这些问题,本文将负相似信息引入到拉普拉斯支持向量机(Laplacian Support Vector Machine,LapSVM)的流形正则化项中,提出了一种引入负相似的拉普拉斯支持向量机(Dissimilarity in Laplacian Support Vector Machine,Diss-LapSVM)分类算法,抑制光谱空间变异对分类结果的影响。同时,本文提出利用线性近邻传播(Linear Neighborhood Propagation,LNP)算法构造图的拉普拉斯矩阵,更有效地引入无标签样本的信息。实验结果表明,本文算法的分类精度得到了提高,特别是对光谱特征相似的地物。

高光谱图像、负相似、LapSVM算法、LNP 算法、半监督分类

TN911.73

国家自然科学基金项目61275010;教育部博士点基金20132304110007;黑龙江省自然科学基金F201409

2015-05-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

414-422

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

2015,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn