PCA联合子空间理论的规范化与扩展
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

PCA联合子空间理论的规范化与扩展

引用
对于高维数据的分类,主成分分析(PCA)联合子空间可为每类数据建立更为细致的概率模型,从而可有效地提高贝叶斯分类的准确性.本文首先对PCA联合子空间理论进行了规范化,提出了两个基本假设,并从理论上证明了残差子空间参数“代表特征根”的启发式取值正是其极大似然估计.本文进一步对样本残差的概率模型进行了扩展,提出了扩展型逐类联合子空间算法.最后,本文通过在真实数据上实验结果证明了扩展型逐类联合子空间算法的优越性.

主成分分析(PCA)、贝叶斯分类、联合子空间

29

TP181(自动化基础理论)

国家自然科学基金项目61171138的资助

2014-02-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

1638-1643

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

29

2013,29(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn