递归Bayes模型粒子滤波方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0530.2013.02.002

递归Bayes模型粒子滤波方法

引用
针对粒子滤波算法中存在的粒子退化、粒子多样性匮乏和计算量大等问题,本文提出一种基于递归Bayes模型的粒子滤波方法,该方法通过利用系统的状态方程和随机变量概率密度之间的转换关系,将状态的预测概率密度变换为后验概率密度相应的递归形式,并且用于下一次迭代过程的粒子根据当前状态估计重新采样,使新粒子尽可能地分布在真实状态的邻域内,增大粒子有效利用率,提高滤波精度.理论分析和仿真结果表明,与经典的粒子滤波算法和其他重采样算法相比,本文所提算法不仅滤波精度得到了改善,而且计算复杂度也得到了有效的降低.

粒子滤波、后验概率密度、递归Bayes模型

29

TN953

国家自然科学基金资助项目60872156,61179014

2013-04-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

152-158

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

29

2013,29(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn