一种提高支持向量机针对低维向量分类精度的新方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0530.2004.03.001

一种提高支持向量机针对低维向量分类精度的新方法

引用
本文提出一种支持向量机的全局优化训练算法,形成一种新的分类器,以解决传统的支持向量机在对低维样本点分类时产生的精度下降问题.首先对支持向量机原理,以及以SVM-light为代表的经黄SVM训练算法进行分析,发现支持向量机的训练在本质上都归结为具有不等式约束条件的二次规划问题.本文直接根据支持向量机的最优分类超平面,将其化为无约束条件的求解函数极值问题.然后采用全局优化算法一禁忌搜索算法得到函数的极值点.通过两类高斯样本点分类实验和人脸图像识别的多类分类试验,证明使用支持向量机的全局优化训练算法,在样本点特征向量维数较低的情况下,比使用传统的支持向量机训练算法分类具有更高的分类准确率.

支持向量机、特征空间、全局优化、禁忌搜索算法

20

TN91

2007-10-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

221-226

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

20

2004,20(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn