一种复值函数型连接神经网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-0530.2003.02.001

一种复值函数型连接神经网络

引用
本文提出了一种复值函数型连接神经网络(CFLNN)结构,可以对复数域信号进行快速处理.函数型连接神经网络通过对输入模式预先进行非线性扩展,增强了输入信号的模式表达,从而可以大为简化网络结构,降低计算复杂度.本文将函数型连接神经网络推广到了复值情况并给出了基于梯度下降的学习方法.计算复杂度分析显示本方法具有结构简单,计算量低的优点.最后,将本方法运用到对复值非线性系统的辩识问题中,仿真实验表明本CFLNN性能与传统复值前馈神经网络相近或更优.

切比雪夫多项式、复值函数型连接神经网络、非线性系统辩识

19

TN943

2007-10-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

95-99

相关文献
评论
暂无封面信息
查看本期封面目录

信号处理

1003-0530

11-2406/TN

19

2003,19(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn