基于预训练模型的多标签专利分类研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11925/infotech.2096-3467.2021.0930

基于预训练模型的多标签专利分类研究

引用
[目的]提高专利自动分类效果,准确地为专利申请书匹配适合的一个或多个IPC分类号.[方法]构建了大规模中文专利数据集(CNPatents),选取IPC分类号中的前4位作为分类标签,使用BERT、RoBERTa和RBT3模型进行训练和测试.[结果]实验结果表明,在含有600多个类别的分类任务中,最好的模型分类准确率为0.756,Micro-F1值为0.597;经过高频标签筛选后,准确率提升到0.912,Micro-F1值提升到0.717.[局限]作为训练集的专利文本存在数据不平衡的状况,对训练集进行高频标签筛选仍未完全解决该问题,需要进一步扩大专利数据集规模.[结论]实现了多标签专利的自动分类,并通过高频标签筛选进一步提升了模型的分类效果.

专利分类、预训练模型、专利文本表示

6

G350(情报学、情报工作)

广东省重点领域研发计划项目;广东省区域联合基金重点项目

2022-06-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

129-137

相关文献
评论
暂无封面信息
查看本期封面目录

数据分析与知识发现

2096-3467

10-1478/G2

6

2022,6(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn