基于图像语义的用户兴趣建模
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于图像语义的用户兴趣建模

引用
[目的]社交网络环境下的用户兴趣建模是好友推荐、精准营销的关键,利用微博用户分享的图像,提出一种基于图像语义的用户兴趣建模方法,旨在更加准确地预测用户的真实兴趣.[方法]在获取新浪微博用户图像数据的基础上,使用图像的高层语义表达用户兴趣特征,基于这些特征使用SVM训练得到图像语义分类器进行预测.[结果]实验结果表明,本文建立的模型能够较为准确地预测用户真实兴趣,169位用户分类的准确率达到97.38%,召回率为98.92%,F值为98.14%.[局限]由于实验图像数据集有限,未能完整地覆盖用户所有的兴趣类别.[结论]该模型能够基于用户分享的图像较为准确地预测用户兴趣,表明了图像高层语义的有效性,同时为图像高层语义应用研究提供了一定的理论和技术基础.

图像语义、用户兴趣建模、社交网络、支持向量机

G353(情报学、情报工作)

国家自然科学基金面上项目“面向词汇功能的学术文本语义识别与知识图谱构建”项目71473183的研究成果之一

2017-06-30(万方平台首次上网日期,不代表论文的发表时间)

共8页

76-83

相关文献
评论
暂无封面信息
查看本期封面目录

数据分析与知识发现

1003-3513

11-2856/G2

2017,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn