基于双流结构和多知识点映射结构改进的深度知识追踪模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1009-8097.2022.08.013

基于双流结构和多知识点映射结构改进的深度知识追踪模型

引用
目前,知识追踪已成为自适应个性化辅助学习的研究热点,而基于循环神经网络的深度知识追踪(Deep Knowledge Tracing,DKT)模型在知识追踪领域已取得了较好的效果.但是,DKT模型在融合领域特征时仍存在特征消减和知识点关联关系遗忘等问题,其精准性有待提高.为此,文章在梳理DKT模型融合领域特征相关研究现状的基础上,提出了一种基于双流结构和多知识点映射结构改进的深度知识追踪模型,并通过实验验证了此模型的精准性相较于原始DKT模型及其相关的改进模型有明显提升,并指出其在智慧学习环境下学生认知结构刻画和学习服务精准推荐方面具有的广阔应用前景.通过研究,文章旨在提升深度知识追踪的精准性并进一步助力自适应个性化学习的实现.

自适应学习、知识追踪、DKT模型、DKTDM模型

32

G40-057(教育学)

国家自然科学基金;吉林省自然科学基金;国家自然科学基金;吉林省科技发展计划项目

2022-09-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

111-118

相关文献
评论
暂无封面信息
查看本期封面目录

现代教育技术

1009-8097

11-4525/N

32

2022,32(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn