联邦个性化学习推荐系统研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1009-8097.2022.02.012

联邦个性化学习推荐系统研究

引用
当前,个性化学习推荐系统面临数据隐私保护、"冷启动"和法律约束等问题,而联邦学习作为近年来优秀的数据隐私保护机器学习技术解决方案,可有效解决这些问题.基于此,文章将联邦学习和个性化学习推荐相结合,设计了联邦个性化学习推荐系统.首先,文章分析了联邦个性化学习推荐系统的具体应用场景,包括横向联邦、纵向联邦、联邦强化三种.其次,文章分别针对这三种应用场景设计了相应的应用解决方案.最后,文章探讨了未来联邦个性化学习推荐系统面临的严峻挑战,以期帮助教育利益相关者在保护数据隐私的同时共享数据价值,最终实现更安全、更高质量的个性化学习推荐服务.

联邦学习、个性化学习推荐、数据隐私、联邦推荐算法

32

G40-057(教育学)

国家自然科学基金;教育部人文社会科学研究项目;江苏省研究生科研与实践创新计划项目

2022-03-11(万方平台首次上网日期,不代表论文的发表时间)

共9页

118-126

相关文献
评论
暂无封面信息
查看本期封面目录

现代教育技术

1009-8097

11-4525/N

32

2022,32(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn