10.16652/j.issn.1004-373x.2023.05.009
基于改进DeepSort的行人多目标跟踪算法
针对现有的行人多目标跟踪算法在遮挡、人群密集和光线差等情况下表现不佳的问题,提出一种改进YOLOv4与改进DeepSort算法相结合的行人多目标跟踪算法.首先,为增强检测网络的特征提取能力,在YOLOv4中嵌入ECANet注意力模块,提高检测精度;其次,在改进DeepSort的跟踪算法中,由卡尔曼滤波算法预测多个行人目标在图像中的轨迹之后,使用GhostNetV1替换DeepSort中的重识别网络来生成行人的外观特征,提高行人重识别网络的性能;进而,采用匈牙利算法对检测框和预测框进行最优匹配,对未匹配成功的检测框采用DIOU代替IOU(交并比)进行二次匹配,提高DeepSort网络的跟踪性能;最后,开展了新跟踪算法与原DeepSort算法的对比实验,结果表明新算法的误检、漏检现象变少,鲁棒性增强,跟踪性能得到提高,MOTA提升了18.8%,IDF1提升了18.2%,身份编号转换次数降低了84次.
多目标跟踪、改进DeepSort、轨迹预测、外观特征生成、图像处理、对比实验
46
TN911.73-34;TP391
国家自然科学基金;国家自然科学基金
2023-03-09(万方平台首次上网日期,不代表论文的发表时间)
共7页
40-46