基于改进DeepSort的行人多目标跟踪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16652/j.issn.1004-373x.2023.05.009

基于改进DeepSort的行人多目标跟踪算法

引用
针对现有的行人多目标跟踪算法在遮挡、人群密集和光线差等情况下表现不佳的问题,提出一种改进YOLOv4与改进DeepSort算法相结合的行人多目标跟踪算法.首先,为增强检测网络的特征提取能力,在YOLOv4中嵌入ECANet注意力模块,提高检测精度;其次,在改进DeepSort的跟踪算法中,由卡尔曼滤波算法预测多个行人目标在图像中的轨迹之后,使用GhostNetV1替换DeepSort中的重识别网络来生成行人的外观特征,提高行人重识别网络的性能;进而,采用匈牙利算法对检测框和预测框进行最优匹配,对未匹配成功的检测框采用DIOU代替IOU(交并比)进行二次匹配,提高DeepSort网络的跟踪性能;最后,开展了新跟踪算法与原DeepSort算法的对比实验,结果表明新算法的误检、漏检现象变少,鲁棒性增强,跟踪性能得到提高,MOTA提升了18.8%,IDF1提升了18.2%,身份编号转换次数降低了84次.

多目标跟踪、改进DeepSort、轨迹预测、外观特征生成、图像处理、对比实验

46

TN911.73-34;TP391

国家自然科学基金;国家自然科学基金

2023-03-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

40-46

相关文献
评论
暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

46

2023,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn