改进的气体泄漏识别算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16652/j.issn.1004-373x.2023.05.008

改进的气体泄漏识别算法研究

引用
为了获得理想压缩气体泄漏信号的识别准确率,进而实现高效检测的目的,提出一种基于经验模态分解、梅尔频率倒谱系数和主成分分析的泄漏超声信号特征提取方法.首先,使用经验模态分解提取泄漏信号的超声频段,通过对固有模态函数的熵值设定阈值,优化频谱混叠;其次,通过构造梅尔变换函数,设计分别针对目标频段中不同分布的梅尔滤波器组;然后,使用主成分分析代替离散余弦变换,提取改进的梅尔频率倒谱系数;最后,在实验室模拟泄漏环境,采集不同泄漏条件的泄漏信号,使用支持向量机实现识别分类,完成泄漏检测.结果表明,使用熵阈值优化的经验模态分解能够提高泄漏信号的识别准确率,改进的梅尔频率倒谱系数是一种更有效的泄漏信号特征,相比改进前识别准确率提高了7.76%.

气体泄漏识别、信号特征提取、阈值设定、频谱混叠优化、主成分分析、梅尔滤波器、泄漏检测

46

TN911.6-34;TB553

2023-03-09(万方平台首次上网日期,不代表论文的发表时间)

共5页

35-39

相关文献
评论
暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

46

2023,46(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn