基于自适应差分进化的学生成绩等级预测神经网络模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16652/j.issn.1004⁃373x.2022.03.024

基于自适应差分进化的学生成绩等级预测神经网络模型

引用
学生成绩数据的分析与挖掘对于教学管理有重要意义,文中提出一种基于自适应差分进化算法优化BP神经网络的学生成绩等级预测模型.以学生各门课程成绩为研究对象,在选定目标课程作为模型输出的基础上,采用相关分析法确定与该门课程成绩相关性较高的科目成绩作为模型输入,建立BP神经网络模型进行成绩预测.针对神经网络收敛速度慢、效果差等不足,采用自适应差分进化算法对神经网络的权值阈值进行优化,以学院某一个年级的183条有效学生成绩数据进行实例验证,并与遗传算法优化神经网络的方法进行比较.结果表明,自适应差分进化算法优化BP神经网络预测结果的精度较高、均方差值较小、收敛效果更好,更有助于学生管理和教学指导.

BP神经网络优化;成绩预测模型;自适应差分进化算法;相关性分析;模型输入;模型输出;数据挖掘

45

TN711⁃34;TP301.6(基本电子电路)

河南省科技攻关项目182102210296

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

130-134

相关文献
评论
暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

45

2022,45(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn