基于加权KPCA和融合极限学习机的人脸识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16652/j.issn.1004-373x.2019.11.009

基于加权KPCA和融合极限学习机的人脸识别

引用
针对传统的核主成分分析(KPCA)人脸识别算法的投影变换矩阵未必是最佳鉴别矩阵的问题,提出一种加权核主成分分析(WKPCA)的人脸识别算法.高分辨率人脸图像包含图像的大部分纹理信息,而低分辨率人脸图像体现了图像的大量形状信息,两类图像经WKPCA提取的特征具有一定的互补性,根据此特性将提取的特征融合以实现分类识别.所提算法采用ELM神经网络作为分类器,在ORL人脸库和Yale人脸库上的实验验证了算法的有效性.

人脸识别、WKPCA、鉴别矩阵、ELM、特征融合、人脸图像

42

TN911.73-34;TP391

国家自然科学基金资助项目61561048;新疆维吾尔自治区科学基金资助项目2015211C257

2019-06-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

36-39,44

相关文献
评论
暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

42

2019,42(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn