面向海量数据的推荐系统的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16652/j.issn.1004-373x.2016.12.015

面向海量数据的推荐系统的研究

引用
在处理大数据时,传统的推荐系统,如常规协同过滤的推荐性能受到了限制。使用操作简便的K均值聚类算法与协同过滤构成组合推荐算法具有较好的推荐性能,该文使用遗传算法对组合推荐算法进行优化,简化组合推荐算法,降低组合算法的复杂度和成本。同时,通过对遗传算法进行改进,以提高遗传算法的优化能力,提高推荐系统性能。最后,通过MovieLens电影打分数据集对该文研究的推荐算法进行性能测试。结果表明,遗传算法的优化能力得到提升,推荐系统的性能有所提高。

大数据、推荐系统、协同过滤、遗传算法、K均值聚类

39

TN911-34;TP18

教育部人文社科规划项目大数据时代海量电信客户价值评价方法研究15XJA630003;重庆邮电大学社会科学基金项目k2014-111

2016-07-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

59-61,65

相关文献
评论
暂无封面信息
查看本期封面目录

现代电子技术

1004-373X

61-1224/TN

39

2016,39(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn