10.16652/j.issn.1004-373x.2016.03.023
基于GA改进BP神经网络网络异常检测方法
考虑到常规BP神经网络算法容易陷入局部最优解,所建立的网络遗传流量检测模型检测效率低,准确率不高等问题,提出一种改进型GA优化BP神经网络算法,并使用其建立网络遗传流量检测模型。常规遗传算法在搜索过程中,往往会由于出现影响生产适应度高的个体而对遗传算法搜索过程产生影响的现象发生,因此需要对常规遗传算法进行改进。使用的方法是通过混合编码方式进行改进,同时对交叉算子、变异算子、交叉概率以及变异概率等参数进行优化修正。使用KDD CUP99数据库中的网络异常流量数据进行实验研究,研究结果表明,所提出方法的检测性能要明显优于常规算法,其对BP神经网络的结构、权值以及阈值进行同步优化,避免了盲目选择BP神经网络结构参数带来的问题,避免了常规BP神经网络容易陷入局部最优解的问题。
网络异常检测、BP神经网络、遗传算法、异常流量
TN711-34;TP393(基本电子电路)
2016-03-30(万方平台首次上网日期,不代表论文的发表时间)
共4页
90-93