基于贝叶斯优化模型的涡轮增压4缸发动机故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16104/j.issn.1673-1891.2022.04.012

基于贝叶斯优化模型的涡轮增压4缸发动机故障诊断

引用
为提高故障诊断方法的精度并减少评估时间,通过对涡轮增压4缸发动机的声信号分析,提出了一种新的发动机故障诊断方法.利用小波包变换(WPT)进行时频分析,并从小波包变换的高、低系数中提取统计特征;然后,利用提取的特征对标准分类模型、贝叶斯优化模型和主成分分析(PCA)结合贝叶斯优化模型进行分析比较.结果表明:与标准模型相比,后2个模型都具有更高的准确度、精密度、灵敏度、特异度和F1值(调和均值);在相似的准确度水平下,PCA结合贝叶斯优化模型比贝叶斯优化模型减少了20%左右的总评估时间和19%的测试时间.PCA结合贝叶斯优化模型在降低计算复杂度和减少评估时间的同时保证了良好的精密度,可为发动机实时故障诊断提供参考.

4缸发动机、故障诊断、声信号、小波包变换、主成分分析、贝叶斯优化模型

36

TP18;U472.9(自动化基础理论)

安徽省质量工程项目;安徽省高校自然科学研究项目;安徽省质量工程教师教学创新团队项目;安徽高校自然科学研究项目;安徽省质量工程项目

2023-02-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

71-78

相关文献
评论
暂无封面信息
查看本期封面目录

西昌学院学报(自然科学版)

1673-1891

51-1689/N

36

2022,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn