基于图像条件的二元合成生成算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16104/j.issn.1673-1891.2020.02.016

基于图像条件的二元合成生成算法

引用
生成对抗网络(GAN)是一种无监督学习方法,该算法巧妙地利用博弈的思想来学习生成式模型,但由于GAN通常从单个潜在源采样,因此常常丢失场景中的多个实体交互信息.为了捕获不同对象之间的复杂交互,包括它们的相对缩放,空间布局,遮挡,提出了一种基于图像条件的生成对抗网络,利用"分解—合成"的流程,模型可以根据输入对象的纹理和形状从它们的关节分布生成逼真的合成图像.通过使用Shapenet数据集,在2D和3D图像中分别对55个常见对象类别约51300个图像模型进行试验,比起传统的SLP和cGAN,算法的图片质量有4%以上的提高.

生成对抗网络、图像合成、图像纹理、交互信息

34

TP391.41(计算技术、计算机技术)

2020-07-17(万方平台首次上网日期,不代表论文的发表时间)

共4页

69-72

相关文献
评论
暂无封面信息
查看本期封面目录

西昌学院学报(自然科学版)

1673-1891

51-1689/N

34

2020,34(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn