RBF与GRNN神经网络模型在城市需水预测中的应用
针对需水量预测具有受诸多因素影响的复杂、高维和非线性等特性,本文基于RBF与GRNN神经网络算法原理,构建RBF与GRNN神经网络需水预测模型,将模型应用于城市需水预测中,并与基本BP神经网络模型以及灰色GM(1,1)需水预测模型的拟合、预测结果进行了对比分析.结果表明:①RBF与GRNN神经网络模型有着较高的拟合、预测精度,平均相对误差均在5%以内,表明研究建立的RBF与GRNN神经网络模型应用于需水预测是合理可行的,模型泛化能力强,预测精度高,算法稳定,与基本BP网络算法相比,RBF与GRNN网络模型还具有收敛速度快、调整参数少和不易陷入局部极小值等优点,可以更快地预测网络,有着良好的应用前景.②相对而言,RBF与GRNN神经网络模型预测精度要优于基本BP网络和灰色GM(1,1)模型.
需水量预测、RBF神经网络、GRNN神经网络、BP神经网络、灰色GM(1,1)
23
TU991.31;TP183(地下建筑)
2013-01-24(万方平台首次上网日期,不代表论文的发表时间)
共5页
148-152